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Diabetes prevention and management: 
the role of trace minerals

I K Akhuemokhan, A Eregie, and O A Fasanmade

Introduction
Interest in the role of trace minerals in diabetes started 
way back in 1929, when Glaser and Halpern noticed 
that yeast extract potentiates the action of insulin.1 The 
discovery in 1959 of glucose tolerance factor in yeast 
and the isolation of chromium as its active component 
intensified interest in the status of other trace minerals 
in diabetes.2

Trace minerals influence glucose metabolism through 
various means, e.g. serving as co-factors, activation of 
insulin receptor sites, and increasing insulin sensitivity.3–5 
Diabetes alters the homeostasis of trace minerals.6–8 Some 
of these minerals, e.g. chromium, zinc, and magnesium, 
are excreted at higher than normal rates in the urine of 
diabetic patients. The polyuria of diabetes resulting from 
hyperosmotic glomerular filtrate is largely responsible 
for enhanced urinary mineral loss.9, 10

The relationship between diabetes and trace minerals 
is complex with no clear cause and effect relationship. 
Which comes first? The effects of hyperglycaemia on min-
erals metabolism, or the effects that follow alterations in 
trace mineral homeostasis on carbohydrate metabolism. 

Controversy remains regarding supplemental minerals 
as adjuncts in the treatment of patients with diabetes.11–13 
Solving this problem could include increasing dietary 
intake of local specific food rich in these minerals or 
utilising supplemental sources of the mineral for those 
at risk of being deficient. 

Methods – data sources
Our aim was to review clinical studies designed to 
investigate the relationship between diabetes and trace 
minerals, and provide evidence-based recommendations 
for the use of trace minerals in the treatment or preven-
tion of diabetes. We conducted a systematic review of the 
literature to identify research that addresses the role, if 
any, of trace minerals in the aetiopathogenesis, preven-
tion, and treatment of diabetes.

We searched MEDLINE, via PubMed, for reports in 
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English of controlled trials using the search terms ‘rela-
tionship between trace minerals/elements and diabetes 
mellitus,’ and ‘relationship between diabetes mellitus 
and trace mineral/elements.’ We reviewed the titles 
and abstracts of each study. These articles were then 
reviewed in full.

Trace minerals
Eating fresh grains, fruits, sea food, and vegetables 
grown in nutrient-rich soil and drinking mineral-rich 
water have been the primary supply for the full spec-
trum of ionically charged minerals. Naturally occurring, 
nutrient-rich soil is almost non-existent on commercial 
farms. Refining of carbohydrate foods also causes a sharp 
drop in the concentration of various vitamins and miner-
als. Drugs, e.g. corticosteroids or thiazide diuretics, can 
lead to significant losses of micro-minerals and induce 
a diabetes-like condition.14–16

Trace minerals play key roles in living organisms. Many 
are essential components of enzymes while others donate 
or accept electrons in oxidation–reduction reactions re-
sulting in the generation and utilisation of energy. Others 
maintain the structural stability of important biological 
molecules and control biological processes by facilitat-
ing the binding of molecules to receptor sites on cell 
membranes, or by altering the structure or ionic nature 
of membranes and inducing gene expression resulting 
in the formation of proteins involved in life processes. 
The relative importance of the processes of absorption, 
storage, and excretion varies among the trace minerals. 
The homeostatic regulation of trace minerals existing as 
positively charged cations, e.g. zinc, occurs primarily 
during absorption from the gastrointestinal tract. Trace 
elements absorbed as negatively charged anions, e.g. 
selenium, are usually absorbed freely and completely 
from the gastrointestinal tract. Thus, they are homeo-
statically regulated primarily by excretion through the 
urine, bile, sweat, and breath.
 
Chromium
In 1955, it was noticed that brewer’s yeast contained 
a glucose tolerance factor (GTF), later found to be a 
form of trivalent chromium, that prevented diabetes in 
experimental animals.17,18 In humans, patients receiving 
total parenteral nutrition (TPN) developed severe signs 
of diabetes, including weight loss and hyperglycaemia 
that was refractory to increasing insulin dosing.19 After 
2 weeks of supplemental chromium, signs and symp-
toms of diabetes subsided, glycaemic control mark-
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edly improved, and insulin requirements significantly 
reduced. Studies of the beneficial effects of chromium 
in patients receiving TPN have been documented and 
chromium is now routinely added to TPN solutions.20,21 
Trivalent chromium is found in egg yolks, whole-grain 
products, high-bran breakfast cereals, coffee, nuts, green 
beans, meat, and some brands of wine and beer.22 Once 
absorbed, chromium is distributed widely in the body, 
with the highest levels being found in the kidney, liver, 
spleen, muscle, and bone.23

Chromium activates insulin receptor kinase and poten-
tiates the actions of insulin. It has also been demonstrated 
to inhibit phosphotyrosine phosphatase, the enzyme 
that cleaves phosphate from the insulin receptor, lead-
ing to decreases in insulin sensitivity.24–26 Activation of 
insulin receptor kinase and inhibition of insulin recep-
tor phosphatase leads to increased phosphorylation of 
the insulin receptor and increased insulin sensitivity.27 
Chromium enhances insulin binding, insulin receptor 
number, insulin internalisation, and beta cell sensitivity.28

Consumption of refined foods exacerbates insufficient 
dietary chromium because these foods are not only low in 
dietary chromium but also increase its loss from the body. 
Chromium losses are also increased during pregnancy 
and as a result of strenuous exercise, infection, physical 
trauma, and other forms of stress.29,30 Chromium levels 
are low in the elderly and in patients with diabetes.31,32 
Additionally, diabetes patients have altered chromium 
metabolism compared with non-diabetic persons, as 
both absorption and excretion are higher.33,34  Hair and 
blood levels are reported to be between 33% and over 
50% lower in diabetic patients compared with normal 
control subjects.31,35,36 Ravina and colleagues showed that 
administration of chromium can reduce the requirement 
for anti-diabetic drugs by 50% in these patients, and also 
reverse corticosteroid-induced diabetes.16

Results obtained in studies of patients with diabetes 
or glucose intolerance, as well as those from normal 
subjects, have indicated variable effects of chromium 
supplementation on one or more components of the 
serum lipid profile.34, 37–49

Several human studies carried out have reported no 
significant effect of chromium supplementation in pa-
tients with diabetes.37,38,43,50–52 This is however likely to be 
due to patient selection methods.53 Chromium supple-
mentation is primarily of interest in patients suffering 
from or likely to suffer from chromium deficiency if the 
aim is to reduce hyperglycaemia, or as an adjuvant to 
already-existing treatment with established anti-diabetic 
medication.54

Zinc
The relationship between zinc and insulin was first rec-
ognised by Scott and Fischer who found that whereas the 
normal human pancreas contained significant quantities 
of zinc, the diabetic pancreas contained very little.55 Histo-
chemical techniques later confirmed that zinc and insulin 
concentrations in the pancreas changed in the same direc-

tion in humans.56 Severe zinc deficiency is not frequent 
but concerns have nevertheless been raised about zinc 
levels in diabetic patients because of increased excretion 
due to polyuria. Diabetic patients excrete more zinc in the 
urine than those without diabetes.57–59 Hyperglycaemia 
being responsible for the hyperzincuria is supported in 
humans by a significant correlation between glycated 
haemoglobin and urinary zinc excretion.60

Zinc is an efficient antioxidant and has an important 
role in the functioning of hundreds of enzymes and in 
insulin metabolism.61–63 Zinc is found mainly in cereals, 
meat, seafood and dairy products.64 Approximately 90% 
is found in skeletal muscle and bone, and less than 0.1% 
circulates in plasma.65 Zinc is considered important in 
metabolic diseases (e.g. insulin resistance, metabolic 
syndrome, diabetes), because it plays a major role in 
the stabilisation of insulin hexamers and the pancreatic 
storage of insulin. It is an efficient antioxidant, while 
oxidative stress is considered to be a main component 
in initiation and progression of insulin resistance and 
diabetes.66–69 Since zinc is intrinsic to the storage and 
granulisation of insulin within the beta cell, and increased 
insulin secretion reduces beta cell zinc concentration, 
then there would be decreased islet cell insulin content 
in zinc deficiency states.70

Zinc reduced the risk for type 2 diabetes in a zinc-de-
ficient subgroup,71 while aggravated glucose intolerance 
was found in zinc-deficient diabetic patients.72 Correction 
of oxidative stress with dietary zinc may be possible as 
demonstrated by an elevation of hepatic anti oxidant 
enzymes.73 In microalbuminuric type 2 diabetic patients  
zinc lowered homocysteine levels, while in obese, non-
diabetic subjects insulin sensitivity was improved.74,75 
Animal studies carried out by Minami et al showed an 
increase in the progression of diabetic nephropathy in 
diabetic rats when zinc deficiency was induced either 
by increased renal excretion, or by dietary induced 
deficiency.76 In humans, Faure et al demonstrated some 
protective effect of zinc supplementation for the develop-
ment of diabetic retinopathy associated with an increase 
in superoxide dismutase, while the observed decrease 
in retinopathy may be the result of decreased lipid per-
oxidation of the retinal polyunsaturated fatty acids.77

Despite the potential interest in zinc in diabetes, not 
many investigations have been published. The effects of 
hyperinsulinism/hyperglycaemia on tissue concentra-
tions of zinc are difficult to evaluate and this may reveal 
interactions with or alterations in other trace elements, 
differential effects of hyperinsulinism or hyperglycaemia, 
or other factors not yet appreciated. The conclusions are 
far from clear and more studies are definitely required.

Selenium
Selenium is a component of enzymes that catalyse re-
dox reactions and it acts as an antioxidant in the form 
of selenoproteins which contain selenocysteine.78 The 
best known selenoproteins are glutathione peroxidases, 
thioredoxin reductases, and iodothyronine deiodinases.79 
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Food sources include fish, eggs, and meat from animals 
fed abundant amounts of selenium, and grains grown 
on high-selenium soil. Selenium, which is biologically 
important as an anion, is relatively well absorbed from 
the diet and is homeostatically regulated by excretion, 
primarily in the urine but some in breath.80 Selenoproteins 
are responsible for the transport of selenium to tissues 
and severe selenium deficiency is rare, while reduced 
selenium levels are seen in diabetic subjects together 
with increased oxidative stress.81,82 Selenium has control 
when very potent antioxidant and anti-inflammatory 
effects and thus supplementation may be considered in 
persons with insulin resistance and diabetes because of 
the role played by oxidative stress and inflammation in 
conditions of these conditions.83,84

Selenium was found to inhibit hyperglycaemia or 
hyperinsulinaemia-induced expression of adhesion 
molecules and it also reduced inflammation, C-reactive 
proteins and soluble L-selectin.85,86 The effect appears 
to be mediated via phosphorylation of tyrosyl residues 
on cellular and ribosomal proteins normally involved 
in insulin’s post-receptor effects. Battell and colleagues 
showed that sodium selenate improved glucose toler-
ance in the streptozotocin model of diabetes in rats.87 In 
mice, selenate reduced gluconeogenesis and inhibited 
phosphotyrosine phosphatases by 50%.88 In type 1 dia-
betic rats, studies have shown that selenium protected 
the mitochondria from oxidative stress.89–91

In humans, lower levels of sialic acid and triglycerides 
were reported in young adults having the highest dietary 
selenium intake and there was a reduction in comple-
ment factor 3.92,93 There are however only a few studies 
available and no positive effect was found on diabetes 
prevention and some studies even pointed towards an 
increased risk.94–96

Magnesium
Magnesium is essential for all energy-dependent trans-
port systems, glycolysis, oxidative energy metabolism, 
biosynthetic reactions, normal bone metabolism, neuro-
muscular activity, electrolyte balance, and cell membrane 
stabilisation.97 Food sources include chocolate, dried 
fruits, whole grains, leafy green vegetables, legumes, 
nuts, and fish.98 About one-third of an orally administered 
load of magnesium is absorbed in the intestines; excretion 
is primarily via the kidneys, but also via faeces. Several 
hormones help regulate magnesium levels and these 
include calcitonin, parathyroid hormone, and insulin. 
It is an important intracellular cation that is distributed 
into the mineral phase of bones (65%), intracellular 
space (34%), and extracellular fluid (1%).99 More recent 
findings have suggested that as many as 25% of patients 
with diabetes may have suboptimal magnesium status.100 
Magnesium is one of the more common micronutrient 
deficiencies in diabetes.97,101-103 Magnesium deficiencies 
have been implicated in insulin resistance, carbohydrate 
intolerance, dislipidaemia, and complications of diabetes.104 
Hypomagnesaemia in diabetes is most likely due to in-

creased urinary losses,102,103 and low dietary magnesium 
intake has been associated with an increased incidence 
of type 2 diabetes in some,105 but not all studies.106 

Although a reduced release of insulin has been reported 
in individuals with compromised magnesium status, 
most of the focus on magnesium supplementation in 
diabetes now involves interest in preventing long-term 
complications; and the widespread use of magnesium in 
normal metabolism of macronutrients, cellular transport 
systems, intracellular signalling systems, platelet ag-
gregation, vascular smooth muscle tone and contractil-
ity, electrolyte homeostasis, and phosphorylation and 
dephosphorylation reactions suggests that its effects are 
multifactorial.107

Manganese
A deficiency of manganese, a cofactor for several 
enzymatic systems results in glucose intolerance in 
animals.108,109 Also, pancreatectomy and diabetes have 
been correlated with decreased manganese levels in 
blood, while manganese supplements have reversed 
the impaired glucose utilisation induced by manganese 
deficiency in animals.110,111 

In humans, manganese plays a role in the pathogenesis 
of diabetes.112,113 High urinary manganese excretion and 
decreased concentrations of blood and hair manganese 
were observed in diabetic patients compared with a 
normal control group.114–116 However, it is yet to be deter-
mined whether diabetes causes high manganese urinary 
excretion and low serum and hair level of manganese, or 
manganese deficiency contributes to the development of 
the glucose intolerance.116 The pathogenetic implications 
and therapeutic applications are not fully understood 
and more investigations are needed to establish these.

Vanadium and molybdenum
Vanadium, along with its cousin molybdenum, can mimic 
insulin. Both can strongly inhibit protein tyrosine phos-
phatase activity, thus maintaining tyrosine phosphoryla-
tion in protein extracts.117 Vanadium, though present in 
very small quantities, is ubiquitous in the environment, 
making it difficult to induce deficiency or to accurately 
measure it status.98,118 In humans, vanadium can alter lipid 
and glucose metabolism by enhancing glucose oxidation, 
glycogen synthesis, and hepatic glucose output.119,120 

Molybdenum inactivates glycogen synthase, increases 
glycolytic flux in rat hepatocytes, and synergistically 
stimulates glucose uptake in rat adipocytes.117,121,122 

Improvement in lipid levels and significant reduction 
of about 75% to normalisation of blood glucose levels, 
have been reported in diabetic rats treated with orally 
administered molybdenum.123,124

Although some signs of diabetes were improved 
by vanadium and molybdenum treatment, because 
little is known concerning the potential long-term toxic 
side-effects, more studies are definitely needed as the 
therapeutic use of these elements in diabetes appears 
to hold some promise.
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Conclusion
Studies in both animals and humans indicate that 
trace minerals are essential in the action of insulin, and 
epidemiologic studies suggest that tissue levels of these 
minerals are reduced among persons with diabetes 
compared with healthy control subjects. However, the 
role of trace mineral supplementation outside of the rare 
deficiency states is still controversial, especially in their 
use for glycaemic control among diabetic patients. Most 
clinical studies have major limitations including small 
size, short term, non-randomised design, and different 
doses of trace mineral supplementation. Long-term trials 
to assess safety and effects of trace minerals treatment 
on diabetes, as well as metabolic parameters, needs to 
be carried out, even though such trials would be costly 
and time consuming. 

Consumption of local food, fruits and vegetables 
containing beneficial trace micronutrients should be 
encouraged. Multivitamins containing trace minerals 
should be prescribed only when necessary. Care should 
be taken not to medicate what is essentially a lifestyle 
and dietary issue. In the future, therapy for diabetes 
may include nutritional supplements for people whom 
research has identified as having the genetic or clinical 
potential to benefit from them.
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