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Introduction
The prevalence of diabetes is steadily increasing all around the 
world. According to World Health Organization (WHO), the 
number of people suffered from diabetes has increased from 108 
million to 422 million between the year 1980 and 2014.1 If there is 
no preventive measures or steps taken in handling this non-com-
municable disease, it will pose dire consequences towards indi-
vidual just from having this disease. Diabetes not only affect the 
lifestyle of patients, but it can also greatly affect their economy 
due to diabetes-related healthcare expenditure.2 Diabetes melli-
tus or commonly known as diabetes is a metabolic disorder char-
acterized by chronic hyperglycaemia or high blood glucose level 
(BGL) as a result of the defects in insulin secretion, insulin action 
or both.3 Insulin is a type of hormone produced by beta cells in 
the pancreas to regulate the BGL that shall supposedly be in nor-
moglycemic range between 4.0 – 7.0 mmol/L (70 – 120 mg/dL).4 
Symptoms marked by hyperglycaemia may include increased 
thirst, frequent urination, extreme fatigue, and blurred vision.5 
Conversely, hypoglycaemia or low blood glucose level usually 
occurs due to the overdosing of insulin or blood-glucose lower-
ing medication. Symptoms of hypoglycaemia are such as feeling 
anxious, confusion, nausea, and in extreme cases the person can 
slip into coma or death.5

There are four types of diabetes namely; Type 1 diabetes mellitus 
(T1DM), Type 2 diabetes mellitus (T2DM), Gestational diabetes 
(GDM), and other specific types of diabetes6. This study focuses 
on T1DM resulting from autoimmune destruction of pancreat-
ic beta-cells, thus lead to deficient insulin production.3 As a re-
sult, the patients are required to take exogenous insulin injection 
regularly either via subcutaneously or intravenously in order to 
maintain their blood glucose level at a normoglycemic range so 
as to avoid serious complications later on. This phenomenon is 
known as insulin dependent. Possible diabetes-related complica-
tions may include; retinopathy, nephropathy, neuropathy, and 
cardiovascular disease.6 Although several factors are associated 
to have caused T1DM to develop; for instance, due to virus infec-
tion, genetics and family history, the actual cause of T1DM is not 
yet known3 and there is still no cure found with the present-day 
knowledge. T1DM is commonly found in white people but less 
commonly found in Asia due to genetic variations which are 
more prone to T2DM.7 T1DM symptoms can be developed and 
marked rapidly only in a matter of weeks. This type of diabetes 
is commonly found in children and young adults.7

Abstract 

Background: Type 1 diabetes mellitus (T1DM) occurs due to inabil-
ity of the body to produce sufficient amount of insulin to regulate 
blood glucose level (BGL) at normoglycemic range between 4.0 to 7.0 
mmol/L. Thus, T1DM patients require doing self-monitoring blood 
glucose (SMBG) via finger pricks and depending on exogenous in-
sulin injection to maintain their BGL which is very painful and ex-
asperating. Ongoing works on artificial pancreas device nowadays 
focus primarily on a computer algorithm which is programmed 
into the controller device. This study aims to simulate so-called im-
proved equations from the Hovorka model using actual patients’ 
data through in-silico works and compare its findings with the clin-
ical works.
Methods: The study mainly focuses on computer simulation in 
MATLAB using improved Hovorka equations in order to control 
the BGL in T1DM. The improved equations can be found in three 
subsystems namely; glucose, insulin and insulin action subsystems. 
CHO intakes were varied during breakfast, lunch and dinner times 
for three consecutive days. Simulated data are compared with the 
actual patients’ data from the clinical works. 
Results: Result revealed that when the patient took 36.0 g CHO 
during breakfast and lunch, the insulin administered was 0.1 U/min 
in order to maintain the blood glucose level (BGL) in the safe range 
after meal; while during dinner time, 0.083 U/min to 0.1 U/min of 
insulins were administered in order to regulate 45.0 g CHO taken 
during meal. The basal insulin was also injected at 0.066 U/min upon 
waking up time in the early morning. The BGL was able to remain 
at normal range after each meal during in-silico works compared to 
clinical works.
Conclusions: This study proved that the improved Hovorka equa-
tions via in-silico works can be employed to model the effect of meal 
disruptions on T1DM patients, as it demonstrated better control as 
compared to the clinical works. 

Keywords: Type 1 diabetes mellitus; Hovorka model; In silico 
works, Model predictive control



Vol 29 No 1 February 2021 2 African Journal of Diabetes Medicine

Research Article

The prevalence of T1DM is increasing in many countries includ-
ing Malaysia particularly in children and adolescents, and this 
condition will remain even after they turn into adults.8 Current 
practice of self-monitoring blood glucose (SMBG) via finger 
pricks and multiple daily injections (MDI) of insulin can be really 
painful for T1DM patients. Most T1DM patients use this conven-
tional method to maintain their BGL within safe range (4.0 to 7.0 
mmol/L). Thus, this has prompted the doctors and researchers to 
introduce artificial pancreas device (APD) to T1DM patients in 
managing their BGL. Although the applications of APD technol-
ogy in medical and healthcare services have been expanding over 
the years,9-11 the control algorithms used are still lagging behind. 
There are few limitations that need to be addressed and one of 
them involves the uncertainty of delivering the right dosage of 
insulin into T1DM patient. This is necessary to maintain their 
BGL to be within normoglycemic range. If the insulin is infused 
in large amount, the patient may experience hypoglycaemia. If 
the insulin is infused insufficiently, the patient may experience 
hyperglycaemia. 

An attempt also has been made by previous researchers to im-
prove the existing Hovorka equations;12-15 however, as of to date, 
there are still no clinical data used in the simulation work so as 
to prove the applicability and userability of the newly developed 
control algorithm using the improved Hovorka equations. Fur-
thermore, a comparative study has to be made between the find-
ing results from the clinical work and in-silico work (simulated 
result via improved equations) using actual T1DM patients’ data 
in order to compare their performances in regulating BGL for 
sustainable purposes in the future. Therefore, the objectives of 
this study are; 1) to determine the amount of administered exog-
enous insulin required to regulate the BGL in the normoglycemic 
range at all times for T1DM patients, 2) to compare the findings 
between the clinical and in-silico works using actual patient data 
in terms of its performance, and 3) to determine the usability and 
applicability of the improved Hovorka equations for model ver-
ification.

The study is only limited to the effect of meal disturbances to the 
BGL without considering other disturbances such as stress and 
physical activities. Apart from that, hormone used is limited to 
insulin only and served in regulating the BGL for T1DM. T1DM 
and its complications have caused substantial effects in the quali-
ty of life of the people who suffer from this non-communicable or 
autoimmune disease. The constant demand of T1DM care such 
as accurate or healthy eating plan, exercising, keeping track of 
blood glucose level, and others can be really stressful and pain-
ful. The expansion of model equations and algorithm employed 
in the development of artificial pancreas device in this study will 
certainly help to decrease the duration and number of clinical tri-
als, hence saving the cost and time for both doctors and patients. 
Besides that, the artificial pancreas device also helps T1DM pa-
tient to live and enjoy a normal life.

Artificial pancreas device

Artificial pancreas is a device that closely imitates the function 
of actual pancreas in regulating blood glucose level. In general, 
artificial pancreas device comprises the following parts; contin-
uous glucose monitoring (CGM) sensor, CGM receiver, control 
algorithm device (CAD) and continuous subcutaneous insulin 
infusion (CSII) pump.16 CGM sensor measures the blood glucose 
level continuously via the sensor attached on the skin prior to 
transmitting to the CGM receiver from which it displays the cur-

rent readings and trends of blood glucose in the form of a graph. 
The readings are sent to the CAD such as smartphone or person-
al computer (PC) whereby the algorithms analyse and calculate 
the insulin doses required. The CAD then interacts with the insu-
lin pump to deliver proper doses of insulin. 

Diabetic model

Previous works related to managing diabetes had been done 
especially towards using mathematical modelling in the past 50 
years in which these works were developed to simulate the glu-
cose-insulin dynamic system.17-24 For the purpose of this study, 
improved Hovorka equations from Hovorka Model21 are used to 
facilitate the simulation work. In improved Hovorka equations, 
additional parameters have been added into the glucose sub-
system, insulin action subsystem and plasma insulin subsystem 
whilst the rest of the equations remain the same.14 This improve-
ment of the equations is done due to lacks of interaction between 
the parameters and variables in the insulin action subsystem and 
mass of glucose in accessible compartment (Q1) and non-acces-
sible compartment (Q2).14 The results had caused a change in 
behaviour in Q1 and Q2 when compared to Hovorka model.21 
Therefore, the improved Hovorka equations are expected to be 
more precise and highly efficient in stabilizing glucose-insulin 
regulatory system for T1DM. More details on the improved Hov-
orka equations can be found in the methodology section.

Control Systems

In order for the artificial pancreas to function accordingly, cer-
tain control algorithms need to be implemented. There are vari-
eties of control strategies used to control the BGL in T1DM pa-
tients. The control strategies proposed for the artificial pancreas 
are namely; proportional-integral-derivatives (PID) control, neu-
ral network control, fuzzy logic control, and model predictive 
control (MPC) as can be encountered in the literature.25-29 This 
study employs enhanced model predictive control (eMPC). The 
enhanced model predictive control (eMPC) or multi-paramet-
ric model predictive control (mp-MPC) possesses advantages 
in which the on-line optimisation can be done via off-line op-
timisation allowing for better implementation of MPC.30 Unlike 
MPC; it requires on-line optimisation, thus slower the systems. 
The application of mp-MPC can be seen in the area where MPC 
is not capable of penetrating systems involving fast dynamics or 
fast sampling time or where the cost and size of the controller 
dominate the selection of hardware.30 Some of the applications of 
mp-MPC include automotive (catalytic converters), biomedical 
(artificial organs and drug delivery) and industrial (robotics and 
process control).30 Past work using eMPC as control strategy can 
be seen in the literature.31,32 

Methodology
Data collection and extraction

Prior to performing this study, written approval to collect pa-
tient’s data must first be obtained from a UiTM Research Ethics 
Committee. Data collection from the actual T1DM patients is re-
quired for clinical works and subsequent interviews conducted 
during the patient’s appointment with a paediatrician at UiTM 
Medical Specialist Centre, Sungai Buloh, in Selangor with the 
consent of the parents. Data collected include the patients’ so-
cial demography, which are namely; name, date of birth, gender, 
race, body weight, height, body mass index, and year diagnosed 
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with T1DM, type of meal intake from breakfast, lunch and din-
ner, amount of CHO taken every meal, pre-meal BGL via fin-
gerpicks and the amount of insulin administered before meal. 
Data collected during the appointment day are termed as clini-
cal data in this study and all the data were taken from Patient 1 
throughout Day 1 to Day 3 observations. These clinical data were 
subsequently fitted into the improved Hovorka equations for 
simulation purposes using MATLAB in the in-silo works. Both 
results from clinical and in-silico works were then compared, 
accordingly. Figure 1 shows the schematic flow diagram of the 
methodology, and Table 1 shows brief information of patient 1.

Figure 1: Schematic flow diagram of the methodology

 

Table 1: Brief information of Patient 1

Data on Patient 1

Gender Male
Age 13 years old (in 2000)
Race Malay
Weight, Kg 27
Height, m 1.35
Body Mass Index (BMI), Kg/
m2

14.81

In-Silico (simulation) works using Improved Hovorka Equa-
tions 

As mentioned above, data from the clinical works were used to 
simulate the improved Hovorka equations in the in-silico works. 
The improved Hovorka equations were adopted from Yusof et 
al.14 The glucose subsystem, plasma insulin subsystem and insu-
lin action subsystem equations in the original Hovorka method 
have been modified while other formulas remain unchanged. 
Figure 2 shows the schematic flow diagram of the improved 

equations adapted from.24 The improved equations are described 
as follows:

Figure 2: Schematic flow diagram of the improved equations.

Glucose subsystem 

In the improved Hovorka equations, the glucose subsystem can 
be represented by the following equations: 

(dQ₁(t))/dt=EGP₀+U_(G )+0.01Q₂+[x₁kw1+x₂kw2+x₃kw3]-FR Q₁-[(F₀
c
₁)/

(VG  G(t) )]Q₁- 0.002Q₁  (1)

(dQ₂(t))/dt=[x₁kw11+x₂kw22+x₃kw33]+EGP₀[x₁kw1+x₂kw2+x₃kw3]-k₁₂Q₂    (2) 

Where the total non-insulin dependent glucose flux, F01c (mmol/
min), and renal glucose clearance, FR (mmol/min), can be found 
as in equations (3) and (4). 

F01
C={(F_01  if G≥4.5 mmolL^(-1) 

(F01 G)⁄4.5  otherwise ) (3)

FR={(0.003(G-9) VG 

if G≥9 mmolL(-1) 

0 otherwise ) (4)

Where,

Q1(t)=mass of glucose in accessible compartment (mmol)

Q2(t)=mass of glucose in non-accessible compartments (mmol)

UG=gut absorption rate (mmol/min)

Equation for meal disturbances is represented by equation (5)

UG=(DG AG te
(1/tmax,G  ))/t2

max,G      (5)
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Where,

DG=amount of carbohydrate (CHO) digested (mmol)

AG=carbohydrate bioavailability (unitless)

tmax,G=time-to-maximum of CHO absorption (min)

Plasma insulin subsystem 

The insulin subsystem can be represented by the following equa-
tions:

(dI(t))/dt=(UI (t))/VI -ke I(t)-[kw1 x₁(t)+kw2 x₂(t)+kw3 x3 (t)]       (6)
(dS₁(t))/dt=u(t)-(S₁(t))/(tmax,I   )     (7)
(dS₂(t))/dt=(S₁(t))/(t_max,I   )-(S₂(t))/(tmax,I)   (8)

Where,

 S1=insulin sensitivity in the accessible compartment (mU)
 S2=insulin sensitivity in the non-accessible compartment (mU)
 UI=insulin absorption rate (mU/min)
U(t)=exogenous insulin input (mU/min)
tmax,I=time-to-maximum of insulin absorption (min)
In the improved equations, few variables are added to the plas-
ma insulin concentration equation as seen in (6).

Insulin action subsystem 

Equations (9) to (11) represent the insulin action subsystem as 
follows:

(dx₁)/dt=-ka1 x1 (t)+kw1 I(t)+kw11 I(t)     (9)
(dx₂)/dt=-ka2 x₂(t)+kw2 I(t)+kw22 I(t)    (10)
(dx₃)/dt=-ka3 x₃(t)+kw3 I(t)+kw33 I(t)    (11)

Constants and parameters involved in the equations are shown 
in the Tables 2 and 3.

Table 2: Constant Values of Improved Hovorka Equations

Symbol Constant Value and Unit
k12 Transfer rate from 

non-accessible to 
accessible com-
partment

0.066 min-1

ka1 Deactivation rate 
of glucose

0.006 min-1

ka2 Deactivation rate 
of glucose

0.06 min-1

ka3 Deactivation rate 
of glucose

0.03 min-1

kw1 Activation rate of 
glucose

50.1 min-1

kw11 Activation rate of 
glucose

-10 min-1

kw2 Activation rate of 
glucose

50.1 min-1

kw22 Activation rate of 
glucose

-0.01 min-1

kw3 Activation rate of 
glucose

50.1 min-1

kw33 Activation rate of 
glucose

-0.01 min-1

ke Insulin elimination 
from plasma

0.138 Lkg-1

VI Insulin distribution 
volume

0.12 Lkg-1

VG Glucose distribu-
tion volume

0.16 Lkg-1

AG Carbohydrate 
(CHO) bioavail-
ability

0.8 (unitless)

tmax,G Time-to-maximum 
of CHO absorption

40 min

Table 3: Parameter Values of Improved Hovorka Equations

Symbol Parameters Value and Unit
*SfIT Insulin sensitivity 

of distribution/
transport

51.2 x 10-4 min-1 per 
mU L-1

*SfID Insulin sensitivity 
of disposal

8.2 x 10-4 min-1 per 
mU L-1

*SfIE Insulin sensitivity 
of EGP

520 x 10-4 per mU 
L-1

EGP0 EGP extrapolated 
to zero insulin 
concentration

0.0161 mmol kg-1 
min-1

F01 Non-insulin-
dependent glucose 
flux

0.0097 mmol kg-1 
min-1

tmax, I Time-to-maximum 
of absorption of 
subcutaneously 
injected short-
acting insulin

55 min

The simulation work on the meal disturbances was based on the 
actual patients’ daily meals intake. Table 4 shows an example of 
amount of daily meals intake specifically carbohydrate (CHO) 
suggested for a male patient aged 13 years old (Patient 1). The 
suggested meal intake is based on total daily calorie requirement 
which varies according to age and gender as shown in Table 5. 
It consists of breakfast, lunch and dinner at which this informa-
tion is adopted into the simulation work using the improved 
Hovorka equations. Generally, 50% of calorie intake comes from 
CHO.30 The calculations of CHO intake are shown in the follow-
ing session. 

Table 4: Example amount of daily meals intake for male patient aged 
13 years old (Patient 1)

Meal Time 55 min 55 min 55 min
(hours) Meal 

Duration 
(min)

g CHO mmol 
CHO

55 min
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Breakfast 0730 30 36 1241
Lunch 1330 30 36 1241
Dinner 1900 30 45 1551
Total 117* 4033

Sample calculation of CHO intake for T1DM patient

Sample calculations of CHO intake for the T1DM male patient 
aged 13 years old with body weight of 27 kg (Patient 1) are shown 
as follows. The daily energy (calorie) requirement by weight is 
based on Table 5 for a male patient aged between 11 to 14 years 
old.33 This serves as a guideline for T1DM patient.

Table 5: Daily energy (calorie) requirement by weight for Children and 
adolescents

Age Energy (kcal/kg/day)
0 – 6 months ≥ 108

7 – 12 months ≥ 98

1 – 3 years 102

4 – 6 years 90

7 – 10 years 70

11 – 14 years Male 55
Female 47

15 – 18 years Male 45
Female 40

Daily energy (calorie) requirement by weight=55 kcal/kg/day

So, 

55 kcal/kg/day × 27 kg=1485 kcal/day

Therefore,

1485/2=742.5 kcal/day CHO

Convert the unit whereby 4 kcal=1 g CHO

742.5/4=185.6 g CHO

The bolus (exogenous) insulin required per day can be calculated 
based on the amount of CHO intake, i.e. 117 g CHO. In general, 
1-unit of rapid acting insulin can cover 10 to 15 grams of car-
bohydrate.34 However, this range can vary from 6 to 30 grams 
depending on the individual’s sensitivity to insulin as the insulin 
sensitivity for individual may vary for different period of time.34 
The total daily dose (TDD) of insulin can be calculated based 
on the insulin-to-carbohydrate ratio (ICR) used which is 1:15 as 
shown in equation (12).

TDD=Total amount of CHO intake ÷ 15 g of CHO disposed by 1 
unit of insulin  (12)

Therefore,

TDD=117 g CHO ÷ 15 g of CHO disposed by 1 unit of insulin

TDD=7.8≈8 units of rapid acting insulin

From the calculation above, the total daily dose of insulin re-

quired to cover the 117 g of CHO intake is 8 units.

The enhanced Model Predictive Control (eMPC) utilized in this 
study was to regulate future glucose concentrations based on 
the system model. The model was a nonlinear approximation of 
the system in which measurement for future glucose concentra-
tion was predicted based on the previous inputs namely; insulin 
infusion rate and meal disturbances. Constraint was imposed 
such that the blood glucose level, G(t), was set at normoglyce-
mic range (4.0 – 7.0 mmol/L) and the insulin infusion rate, u(t), 
was between (0-100 mU/min) based on the current insulin pump 
specification.21,22

Initial values for S1, S2, x1, x2, and x3 were set at zero since the 
insulin had not been injected into the patient’s body and the in-
sulin being administered which caused glucose transport/dis-
tribution, glucose disposal and EGP had not yet occurred.24 The 
bolus insulin for each meal was obtained from trial and error 
basis in order to minimize the BGL to normal range while not 
experiencing hypoglycaemia (≤4.0 mmol/L). The time at which 
insulin was administered should be between 30 minutes before 
meal and at meal time.

Results and Discussion
Comparison of results between Clinical and in-silico works for 
Patient 1 on Day 1

Figure 3 shows the graph of blood glucose level (BGL) versus 
time for clinical and simulation works for 24-hours of patient 1 
on day 1. The blue and yellow lines represent the clinical and 
simulation data, respectively, while the red lines represent the 
target range of BGL within 4.0 to 7.0 mmol/L (normoglycemic 
range). In the clinical work, the patient needed to do self-moni-
toring blood glucose (SMBG) via finger prick before and 2-hours 
after every meal and multiple daily injections (MDI) of insulin to 
maintain his BGL in normoglycemic range. On the other hand, 
as the patient woke up in the morning and started to consume 
meals on Day 1, his BGL was measured and monitored continu-
ously and the exogeneous insulin was infused automatically (by 
a micro pump as set and programmed in the control algorithm) 
throughout the day in the in-silico works. The patient had three 
meals per day which were taken at the same time for three con-
secutive days; namely breakfast (7.30 am), lunch (1.30 pm) and 
dinner (7.00 pm).

Figure 3: BGL vs time for clinical and simulation works in 24 hours for 
Patient 1 on day 1
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Based on the graph for clinical works (blue line) as shown in Fig-
ure 3, patient 1 has been experiencing hyperglycaemia for most 
of the time within 24-hours. Patient 1 managed to achieve normo-
glycemic range during breakfast time (7.30 am) only within t=150 
to 240 min. The lowest BGL recorded was 6.30 mmol/L during 
this time. Peak BGL recorded was 19.30 mmol/L at 2-hours post 
lunchtime (3.30 pm) within t=630 to 810 mins. For the simulation 
works (yellow line), the patient was able to achieve normoglyce-
mic range in a significant time of the day with the lowest BGL re-
corded was 4.50 mmol/L and finally stabilized in the end, starting 
at t=1110 min (11.30 pm). Although there is a fluctuation of BGL 
after every meal, which is normal, the BGL does not rise dras-
tically to a harmful level. Peak BGL recorded was 9.13 mmol/L 
during dinner and was close to the normoglycemic range.

Figure 4 shows the simulation work of BGL versus time for 
24-hours of patient 1 on day 1. The simulation work was done 
in MATLAB R2016a using data from the clinical work as previ-
ously mentioned. The simulation work started at 5.00 am (t=0 
min), for which basal insulin was administered at 66.67 mU/min. 
Bolus insulin was administered 30 minutes before meal time. At 
t=120 min, the first bolus insulin of 100 mU/min was adminis-
tered before breakfast at 7.30 am (t=150 min). During breakfast, 
the patient consumed 36 g of CHO which caused the BGL to 
increase rapidly from 5.16 to 8.77 mmol/L within 30 minutes of 
meal duration. The BGL gradually decreased over time until it 
reached 4.5 mmol/L and stabilized. At t=480 min, second bolus 
insulin was administered at 100 mU/min. The patient consumed 
36 g CHO at lunchtime (1.30 pm) with 30 minutes meal duration. 
Shortly afterwards, the BGL increased from 4.50 to 8.16 mmol/L. 
The final bolus insulin of the day was administered at t=810 min 
at the exogeneous insulin infusion rate of 100 mU/min. Patient 
1 had a dinner at 7.00 pm (t=840 min) for half an hour and con-
sumed 45 g CHO. The BGL rose from 4.50 to 9.13 mmol/min af-
ter 30 minutes of the meal time, the highest BGL recorded. After 
around one and a half hours (1 ½ hour), the BGL reached the 
normoglycemic range of 6.93 mmol/L at t=965 min. Figures 5-7 
show the detailed day 1 simulation work profiles of BGL versus 
time for breakfast, lunch and dinner, respectively.

Figure 4: Simulation work of BGL versus time for 24-hours of patient 
1 on day 1.

Figure 5: Simulation work of BGL vs time during breakfast for Patient 
1 on day 1

Figure 6: Simulation work of BGL vs time during lunch for Patient 1 
on day 1

Figure 7: Simulation work of BGL vs time during dinner for Patient 
1 on day 1

Table 6 shows the comparison of BGL (at peak) between clin-
ical and simulation works for patient 1 on day 1. The BGL for 
clinical work was significantly higher than the simulation work. 
The clinical work recorded highest BGL during lunch at 19.30 
mmol/L, while the simulation work showed at 9.13 mmol/L 
during dinner. This result indicates that simulation work has 
indeed better control of BGL over clinical work. Tables 7 and 8 
show the analysis of clinical and simulation data for Patient 1 on 
Day 1, respectively. Based on both tables, p values were recorded 
below 0.05 which indicated that all the clinical and simulation 
data were statistically acceptable and in good order. 
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Table 6: Comparison results on BGL between clinical and simulation 
works on day 1

Meal Yes or No Peak blood 
glucose level 
(mmol/L)
Clinical Simulation

Breakfast Yes 10.10 8.77
Lunch Yes 19.30 8.16
Dinner Yes 17.80 9.13

Table 7: Clinical data analysis of Patient 1 on Day 1

Coeffi-
cients

Standard 
Error

t Stat P-val-
ue

Intercept 11.75 0.97 12.13 4.424 x 
10-16

X Variable 
1

0.0034 0.0012 2.90 0.0057

Comparison of results between Clinical and in-silico works for 
Patient 1 on Day 2

Figure 8 shows the graph of clinical and simulation works for 
24-hours of the patient 1 on day 2. As similar to the day 1, the pa-
tient has experienced hyperglycaemia for most of the time within 
24-hours in the clinical work (blue line). Patient 1 managed to 
achieve normoglycemic range during breakfast time (7.30 am) 
only within t=150 to 240 min, and the BGL recorded was 5.00 
mmol/L. Peak BGL was recorded relatively high at 30.00 mmol/L 
within which the time, t=270 to 600 min. The high BGL recorded 
was due to a high amount of carbohydrate (CHO) consumed on 
that particular day. For the simulation work (yellow line), the 
patient was able to achieve normoglycemic range most of the 
time in 24-hours with the lowest BGL recorded was 4.50 mmol/L 
and stabilized afterwards starting at t=810 min (6.30 pm). In 
comparison to the day 1, BGL started to maintain late at night at 
t=1110 min (11.30 pm). Skipping dinner mainly affects the BGL to 
achieve normoglycemic range faster in day 2. Peak BGL recorded 
was 11.01 mmol/L during lunch.

Table 8: Simulation data analysis of Patient 1 on day 1

Coefficients Standard 
Error

t Stat P-value

Intercept 6.832995918 0.356299669 19.17766563 7.312 x 
10-24

X Variable 
1

-0.001528537 0.000426347 -3.5851949 0.000798

Figure 8: Graph of clinical and simulation works for 24-hours of the 

patient 1 on day 2.

Figure 9 shows the simulation work of BGL versus time for 
24-hours of patient 1 on day 2. The simulation work started at 
5.00 am (t=0 min) in which basal insulin was administered at 
66.67 mU/min. Bolus insulin was administered 30 minutes be-
fore meal time. At t=120 min, the first bolus insulin of 100 mU/
min was administered before breakfast at 7.30 am (t=150 min). 
During breakfast which took approximately 30 minutes to fin-
ish, the patient consumed 48 g of CHO. The BGL recorded an 
increase from 5.16 to 9.74 mmol/L within that period. After t=180 
min, the BGL slowly decreased until it reached 4.5 mmol/L be-
fore the next meal. At t=480 min, second bolus insulin was ad-
ministered at 100 mU/min. The patient had a lunch at 1.30 pm 
for approximately 30 minutes and consumed 88 g CHO. The BGL 
later increased from 4.50 to 11.01 mmol/L, the highest BGL ever 
recorded on the day 2. Despite not having dinner, the final bolus 
insulin was administered at t=810 min at 100 mU/min to regu-
late BGL within a safe range. At t=650 min, the BGL managed 
to reach the normoglycemic range of 6.95 mmol/L. Figures 10 
and 11 show the detailed simulation work profiles of BGL versus 
time for breakfast and lunch for day 2, respectively.

Table 9: Comparison results of BGL between clinical and simulation 
works on Day 2

Meal Yes or No Peak blood glucose level 
(mmol/L)
Clinical Simulation

Breakfast Yes 30.00 9.74
Lunch Yes 30.00 11.01
Dinner No 15.02 4.50

Figure 9: Simulation work of BGL versus time for 24-hours of patient 
1 on day 2.
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Figure 10: Simulation work of BGL versus time during breakfast for 
patient 1 on day 2.

Figure 11: Simulation work of BGL vs time during lunch on day 2

Table 9 shows the comparison of BGL at peak condition between 
clinical and simulation works on day 2. It demonstrated the same 
condition as in day 1 in which clinical work recorded significant-
ly high BGL at 30.00 mmol/L during breakfast and lunch com-
pared to the simulation work at 11.01 mmol/L during lunch only. 
Similarly, it was proven that the simulation work managed to 
control BGL better than in the clinical work. Table 10 shows the 
clinical data analysis of Patient 1 on day 2. Based on the table, p 
value for x-variable 1 was recorded higher than 0.05 which indi-
cated that that the data was statistically not strong and reliable. 
This might be due to unavailability of data for meal time during 
dinner as the patient skipped his dinner on day 2. However, Ta-
ble 11 shows that p values were below 0.05 for the simulation 
data. This again proved that the simulation work yielded much 
reliable, strong data which, in turn, resulted in better control of 
the patient’s BGL. 

Table 10: Clinical Data Analysis of Patient 1 on Day 2

Coefficients Standard 
Error

t Stat P-value

Intercept 19.85 2.24 8.88 1.3001 x 
10-11

X Variable 
1

-0.0002 0.003 -0.071 0.944

Table 11: Simulation Data Analysis of Patient 1 on Day 2

Coefficients Standard 
Error

t Stat P-value

Intercept 7.25 0.37 19.66 2.582 x 
10-24

X Variable 
1

-0.0023 0.00044 -5.14 5.234 x 
10-6

Comparison of results between Clinical and in-silico works for 
Patient 1 on Day 3

Figure 12 shows the profile of BGL versus time for clinical work 
(blue line) and simulation work (yellow line) for 24-hours of pa-
tient 1 on day 3. Based on Figure 12, patient 1 frequently expe-
rienced hyperglycaemia episode within 24-hours during clinical 
works, and the trend was similar to the previous two days. Pa-
tient 1’s BGL was recorded at 4.30 mmol/L during breakfast time 
(7.30 am) at t=150 to 240 min, which was close to hypoglycaemia. 
Nevertheless, his BGL reached its peak at 17.40 mmol/L within 
t=270 to 510 min right after he consumed his breakfast. For the 
simulation work, the patient’s BGL remained at the normoglyce-
mic range most of the time. The highest BGL ever recorded was 
9.14 mmol/L. After dinner (7.00 pm), patient’s 1 BGL gradually 
stabilized at 4.50 mmol/L at t=1110 min (11.30 pm) and thereafter.

Figure 12: Profile of BGL versus time for clinical work (blue line) and 
simulation work (yellow line) for 24-hours of patient 1 on day 3.

Figure 13 shows the simulation work profile of BGL versus time 
for 24-hours of patient 1 on day 3. Similarly, the simulation start-
ed at 5.00 am (t=0 min) in which basal insulin was administered 
at 66.67 mU/min. Bolus insulin was administered 30 minutes be-
fore mealtime. At t=120 min, the first bolus insulin of 100 mU/
min was administered before breakfast at 7.30 am (t=150 min). 
During breakfast, the patient consumed 48 g of CHO. The BGL 
recorded an increase from 5.16 to 9.74 mmol/L at t=180 min. It 
slowly decreased thereafter until it reached normoglycemic 
range at t=285 min, after 1 hour and 45 minutes. At t=480 min, 
second bolus insulin was administered at 100 mU/min. The pa-
tient consumed 45 g CHO during lunch (1.30 pm) for approx-
imately 30 minutes. The BGL later increased from 4.50 to 9.13 
mmol/L. The final bolus insulin was then administered at 83.33 
mU/min at t=810 min. When the patient consumed 45 g CHO 
during dinner at t=840 min (7.00 pm), the BGL recorded an in-
crease from 4.50 to 9.14 mmol/L prior to gradually descending 
upon reaching the normoglycemic range at t=1100 min. Figures 
14-16 show the detailed day 3 simulation profiles of BGL versus 
time for breakfast, lunch, and dinner, respectively.
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Figure 13: Simulation work profile of BGL versus time for 24-hours of 
patient 1 on day 3.

Figure 14: Simulation work of BGL vs time during breakfast for Patient 
1 day 3

Figure 15: Simulation work of BGL vs time during lunch for Patient 
1 day 3

Figure 16: Simulation work of BGL vs time during dinner for Patient 
1 day 3

Table 12 shows the comparison of peak BGL between clinical and 
simulation works on day 3. The BGL for clinical work was ap-
parently higher than the simulation work. The highest BGL was 
recorded at 17.40 mmol/L during breakfast in the clinical work, 
while it was registered only at 9.74 mmol/L in the simulation. 
Table 13 shows that p value of x-variable 1 for clinical data was 
higher than 0.05 which indicated the data was not statistically 
reliable. This might be one of the reasons why the patient’s BGL 
was outside of the safe range most of the time in the clinical work. 
On the other hand, p values for simulation data were below 0.05 
which indicated that the data were statistically reliable and very 
strong as shown in Table 14. It has proven again that simulation 
work is better at controlling BGL than the clinical work.

Comparison of results between Clinical and in-silico works for 
Patient 1 on Day 3

Table 12: Comparison results of BGL between clinical and simulation 
works on Day 3

Meal Yes or No Peak blood glucose level 
(mmol/L)
Clinical Simulation

Breakfast Yes 17.4 9.74
Lunch Yes 12.6 9.13
Dinner Yes 13.4 9.14

Table 13: Clinical Data Analysis of Patient 1 on Day 3

Coefficients Standard 
Error

t Stat P-value

Intercept 12.50 0.963 13.0 3.66 x 
10-17

X Variable 
1

0.0015 0.0012 1.33 0.189
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Table 14: Simulation Data Analysis of Patient on 1 Day 3

Coefficients Standard 
Error

t Stat P-value

Intercept 7.20 0.39 18.36 4.484 x 
10-23

X Variable 
1

-0.0018 0.0005 -3.76 0.0005

Conclusions
In summary, this study had demonstrated that patient 1 was not 
able to maintain his BGL at safe range (4 to 7 mmol/L) most of the 
time within 24 hours for all three consecutive days as evidenced 
in the clinical works. Patient 1 often experienced hyperglycae-
mia; therefore, it was crucial to monitor his BGL so as to avoid 
long term complications in the future. The BGL recorded in the 
clinical works was not as reliable as in the simulation works. In 
clinical works, the patient needed to do SMBG before and two 
hours after every meal as well as carrying out MDI of insulins in 
order to maintain his BGL in the safe range. On the other hand, 
the BGL was continuously recorded and controlled on real time 
basis throughout the 24 hours duration in the simulation work. 
Furthermore, patient 1 was able to determine the appropriate bo-
lus insulin needed and properly administered when there were 
fluctuations in BGL for future prediction purposes. 
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